Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Apoptosis , Caspase 3 , Caspase 7 , Lung Neoplasms , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Lung Neoplasms/drug therapy , Caspase 3/metabolism , Cell Line, Tumor , Caspase 7/metabolism , Asteraceae/chemistry , Lactones/pharmacology , A549 Cells , Cell Proliferation/drug effects , Sesquiterpenes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Plant Leaves/chemistry , Animals , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364941

ABSTRACT

Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS: The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS: An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS: We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION: Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Leishmania , Leishmaniasis , Animals , Mice , Mice, Inbred C57BL , Leishmaniasis/complications , Leishmaniasis/parasitology , Leishmania/physiology , Macrophages , Hyperglycemia/complications , Immunity
3.
Biomed Pharmacother ; 170: 115979, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061138

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths in men and women worldwide. Current treatments have limited efficacy, cause significant side effects, and cells can develop drug resistance. New therapeutic strategies are needed to discover alternative anticancer agents with high efficacy and low-toxicity. TMBP, a biphenyl obtained by laccase-biotransformation of 2,6-dimethoxyphenol, possesses antitumor activity against A549 adenocarcinoma cells. Without causing damage to sheep erythrocytes and mouse peritoneal macrophages of BALB/c mice. In addition to being classified as a good oral drug according to in-silico studies. This study evaluated the in-vitro cytotoxic effect of TMBP on lung-cancer cell-line NCI-H460 and reports mechanisms on immunomodulation and cell death. TMBP treatment (12.5-200 µM) inhibited cell proliferation at 24, 48, and 72 h. After 24-h treatment, TMBP at IC50 (154 µM) induced various morphological and ultrastructural changes in NCI-H460, reduced migration and immunofluorescence staining of N-cadherin and ß-catenin, induced increased reactive oxygen species and nitric oxide with reduced superoxide radical-anion, increased superoxide dismutase activity and reduced glutathione reductase. Treatment also caused metabolic stress, reduced glucose-uptake, intracellular lactate dehydrogenase and lactate levels, mitochondrial depolarization, increased lipid droplets, and autophagic vacuoles. TMBP induced cell-cycle arrest in the G2/M phase, death by apoptosis, increased caspase-3/7, and reduced STAT-3 immunofluorescence staining. The anticancer effect was accompanied by decreasing PI3K, AKT, ARG-1, and NF-κB levels, and increasing iNOS. These results suggest its potential as a candidate for use in future lung anticancer drug design studies.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Female , Humans , Animals , Mice , Sheep , Lung Neoplasms/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Oxidative Stress , Stress, Physiological
4.
Front Cell Infect Microbiol ; 13: 1260448, 2023.
Article in English | MEDLINE | ID: mdl-37799331

ABSTRACT

Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.


Subject(s)
Antiprotozoal Agents , Biological Products , Leishmania , Leishmaniasis , Humans , Terpenes/pharmacology , Terpenes/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Cell Death , Biological Products/pharmacology , Biological Products/therapeutic use
5.
Antioxidants (Basel) ; 12(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36978836

ABSTRACT

Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.

6.
Life Sci ; 319: 121530, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863486

ABSTRACT

AIMS: Hepatocellular Carcinoma (HCC) is a primary neoplasm derived from hepatocytes with low responsiveness and recurrent chemoresistance. Melatonin is an alternative agent that may be helpful in treating HCC. We aimed to study in HuH 7.5 cells whether melatonin treatment exerts antitumor effects and, if so, what cellular responses are induced and involved. MAIN METHODS: We evaluated the effects of melatonin on cell cytotoxicity and proliferation, colony formation, morphological and immunohistochemical aspects, and on glucose consumption and lactate release. KEY FINDINGS: Melatonin reduced cell motility and caused lamellar breakdown, membrane damage, and reduction in microvillus. Immunofluorescence analysis revealed that melatonin reduced TGF and N-cadherin expression, which was further associated with inhibition of epithelial-mesenchymal transition process. In relation to the Warburg-type metabolism, melatonin reduced glucose uptake and lactate production by modulating intracellular lactate dehydrogenase activity. SIGNIFICANCE: Our results indicate that melatonin can act upon pyruvate/lactate metabolism, preventing the Warburg effect, which may reflect in the cell architecture. We demonstrated the direct cytotoxic and antiproliferative effect of melatonin on the HuH 7.5 cell line, and suggest that melatonin is a promising candidate to be further tested as an adjuvant to antitumor drugs for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melatonin , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Melatonin/pharmacology , Melatonin/therapeutic use , Cell Line, Tumor , Lactates
7.
Life Sci ; 269: 119048, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33453246

ABSTRACT

AIMS: The present study investigated the potential effects of pterostilbene (PT) on glycemic and lipid profiles, fat storage, cardiovascular indices, and hepatic parameters of rats fed with sucrose solution. MAIN METHODS: 24 male Wistar rats received either drinking water or a 40% sucrose solution over a period of 140 days. After this period, animals were randomly allocated into four groups (n = 6): Control (C), C + Pterostilbene (PT), Sucrose (S), and S + PT. Pterostilbene (40 mg/kg) was given orally for 45 consecutive days. KEY FINDINGS: Pterostilbene did not influence morphometric and nutritional parameters. The insulin sensitivity index TyG was elevated in the C + PT group (p < 0.01) and reduced in S + PT group (p < 0.05). Basal glucose levels were lower in the S + PT group (p < 0.05), and the glycemic response was improved with PT treatment in glucose provocative tests. Conversely, rats from the C + PT group showed impaired glucose disposal during those tests. Lipid profile was partially improved by PT treatment. Hepatic oxidative stress in the S group was improved after PT treatment. In the C group, PT reduced SOD activity, glutathione levels, and increased catalase activity. Collagen content was reduced by PT treatment. SIGNIFICANCE: PT effects depends on the type of diet the animals were submitted. In rats fed with sucrose-solution, PT confirmed its positive effects, improving glucose and lipid profile, and acting as a potent antioxidant. The effects of PT on rats that consumed a normal diet were very discrete or even undesirable. We suggest caution with indiscriminate consume of natural compounds by healthy subjects.


Subject(s)
Antioxidants/pharmacology , Dietary Sucrose/toxicity , Hyperglycemia/drug therapy , Hyperlipidemias/drug therapy , Liver/drug effects , Oxidative Stress/drug effects , Stilbenes/pharmacology , Animals , Blood Glucose/metabolism , Hyperglycemia/chemically induced , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperlipidemias/chemically induced , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Liver/metabolism , Liver/pathology , Male , Oxidation-Reduction , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...